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The general formulae for wave functions based on separated groups, given in a previous paper, 
are applied in a CNDO calculation of the ground state energy of a number of simple hydrocarbons 
and hydrocarbon radicals. It is shown that this approach compares favourably with the usual 
M O - C N D O  method both with regard to the ground state energy and the interpretation in terms of 
chemical bonding. The results for ethane appear to be in fundamental agreement with the discussion 
of t/~e origin ef the barrier of rotation given by Sovers, Kern~ Pitzer and Karplus. Regarding spin 
densities it turns out that the experimental splitting constants can be reproduced to the same level 
of accuracy a~ in the usual M O - C N D O  method without using an abnormally low coupling constant. 
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1. Introduction 

In recent years molecular orbital (MO) calculations for all valence electrons 
with complete (CNDO) or intermediate (INDO) neglect of differential overlap 
are widely applied in the study of problems in organic chemistry Ill .  Before the 
publication of the papers by Hoffmann [2] and by Pople and coworkers [3] MO 
calculations were usually restricted to re-electron systems only. This apparent 
hesitation to use the MO method for all valence electrons is not at all accidental. 
Htickel used his MO calculations to explain the properties of molecules like 
benzene, where the rr-electrons are essentially delocalized~ whereas, from chemical 
experience or-electrons were thought to be localized in bonds which can best be 
described by bond functions of the Heitler-London type. This correlation with 
chemical experience is lost in MO calculations for all valence electrons. In ab-initio 
calculations there is at present no useful alternative for the MO method because 
of the very severe problems which would otherwise arise from the non-orth- 
ogonality of the atomic orbitals and which, despite the growing interest in the VB 
method, have not yet been solved. These problems, however, do not occur in 
semi-empirical calculations with neglect of overlap and one might thus conclude 
that these calculations - if used with care - can be a valuable tool in a test of 
methods other than the MO approach. 

The lack of correlation of MO calculations with chemical experience is of 
course well known and several methods have been proposed to transform de- 
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localized or "canonical" molecular orbitals into localized molecular orbitals. Such 
an approach, however, can be dangerous because the localized orbitals depend 
on the molecule studied, so the chemically interesting interactions become hidden 
within the actual form of the localized orbitals. Consequently the possibility of 
a really acceptable interpretation becomes again questionable. A clear example 
of this problem is the statement [4] that "the additional stabilization that is found 
in aromatic conjugated systems arises from the fact that even the maximally 
localized ~-orbitals are still more delocalized than the ethylene orbital". This, of 
course, is not an explanation but rather an alternative formulation of the problem 
of aromaticity. 

In our opinion, methods based on separated electron pairs or more generally 
on group functions seem to be much more useful. Calculations of this type are 
usually restricted to one single ground state wave function which is a product of 
group functions. In many cases, however, an extension to the mixing with other 
product functions is necessary (in this paper we use the term "product function" 
to mean a completely antisymmetrized product of bond functions including spin 
coupling). For example, in a calculation of the spin density distribution in the 
ethyl radical products of bond functions should be included in which the CH 
bonds are excited to the triplet state or in which the CH bond functions depend 
on one or three instead of two electrons. Extensions of this type have been dis- 
cussed by Kapuy [5], by Diner et al. [6] and in the preceding papers of this 
series [7]. Kapuy's method is based on group functions obtained from a localiza- 
tion procedure as mentioned above, so a comparison with chemical experience 
is again a difficult problem. In the calculation published by Diner et al., the group 
functions are taken to be simple products of molecular orbitals. Such an approach 
has rather bad convergence properties. Moreover, the influence of the chemically 
interesting bond-bond interactions may become a minor part of the total energy 
correction. 

In this paper we will discuss CNDO calculations of simple hydrocarbons, 
starting with a wave function which is a product of the "best possible" bond func- 
tions obtained from hybridized atomic orbitals. This wave function differs from 
the wave function obtained from the separated electron pair theory because the 
bond functions are calculated for isolated bonds. In this way the major part of 
the bond-bond interactions is introduced through the interaction with other 
product functions. In this paper we consider the influence of product functions 
in which part of the bonds are excited and of product functions in which one 
electron is transferred between two bonds. It will be shown that calculations of 
this type compare favorably with M O - C N D O  calculations with the additional 
advantage of a simple correlation with chemical experience. 

Before discussing the calculations in detail, we will make a few general remarks: 
(a) In this paper only molecules will be discussed which, from a chemical 

point of view, have one single structure. For molecules with essentially delocalized 
~-electrons like benzene, it may be useful to describe the a-bonds by the "best 
possible" bond functions and the n-electron system by simple molecular orbital 
wave functions. This possibility is easily incorporated into our method. In the 
same way, a molecule like biphenyl can be described by a number of a-bonds 
and by two separated ~z-electron systems. 
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(b) All calculations in this paper are based on the CNDO approximation. 
Upon introduction of the INDO approximation the main difference with our 
calculations is the fact that matrix elements between the product functions which 
we will call ~p~ and ~pT r are no longer vanishing. This difference is not important 
for our final conclusions. 

(c) Instead of describing the n-electron system of molecules like benzene by 
means of a MO wave function, as mentioned above, one may also extend our 
method by mixing e.g. the two sets of product functions which can be derived 
from the two K6kul6 structures if for both structures the 7t-bonds are treated in 
the same way as the a-bonds. This procedure is in fact a straightforward improve- 
ment of the valence bond method introduced in a previous paper on aromaticity 
and the Woodward-Hoffmann rules [8-]. This is rather simple for monocyclic 
systems. However, for polycyclic systems like naphthalene especially the calcula- 
tion of matrix elements between charge transfer type of product functions be- 
longing to different sets appears to be very complicated. For this reason we have 
not considered this possibility in further detail. 

2. Outline of the Method with a Simple Example 

In this section we will first consider the n-electron system of butadiene. In 
a simple approximation the wave function for the ground state can be written: 

tp G = d a o  (1, 2) bo(3, 4) 

where d is the antisymrnetrization operator for permutations of electrons be- 
longing to different bonds and %(1,2) and bo(3,4) are general two-electron bond 
functions for the separated re-bonds A and B. Within an approach as discussed 
in this paper it is advantageous to use the valence bond method for the calculation 
of the bond functions. We thus write: 

ao (1,2) = #,{[p~[+ [qPl}/]/2 + ,~, IPP-]+ v, Iqq[ 

where p and q are the two atomic orbitals which take part in bond A and #a, 2a, 
and va are the coefficients of the covalent and ionic terms of a o (1,2). 

In order to obtain a complete set of product functions for the 4-electron 
system, we should also consider product functions in which A or B or both are 
excited and product functions with a transfer of one or two electrons from A to 
B or vice versa. This leads to the following possibilities: 

(a) ~Pi~ (2, 2) = SCa (1,2) bj (3,4) 

in which al and bj are either ground or excited state bond functions for A and B. 
If both bonds are calculated in a basis of two atomic orbi ta ls -  as in this p a p e r -  this 
leads to a total number of 9 product functions, including ~p~. 

(b) ~P,,bTT (2,2) = SCaT (1,2) b T (3,4) 

This is a short-hand notation for the product function in which both A and B 
are excited to the single one triplet bond function. These triplets are combined 
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to one total singlet by application of the appropriate Clebsch-Gordan coefficients. 

_ A 8 , 1  3 '  (C) qJi,j t ,  )=sJai(1)bj(3,4,2)  

tpA B, 3 1' ,,j t , ~ = da i ( l , 2 ,4 )  b~(3) 

These stand for product functions in which one electron is transferred from A 
to B or vice versa. The resulting doublet bond functions, e.g.: 

ai(1) = kt + p(1)+ v + q(1) 

ai(1,2,3) =/x~-IP'fiq[ + v[- [qqPl 

are again combined to a 4-electron singlet. Since there are two possible bond 
functions for both positively and negatively charged bonds, we obtain four pos- 

"Ae ' : l  3 ~ " A B ' 3  l" sibilities for both -q:i,j t , ) and q:~,j t , : leading to a total number of 8 product 
functions. 

(d) tpA 'B(0 ,4 )  = b(3,4, 1,2), 

~pA'B (4,0) = a(1,2,3,4). 

Finally, all electrons may be either in A or in B. In a basis of two atomic orbitals 
for each bond, there is only one possible product function in both cases. 

Summing all possibilities together, we obtain 20 product functions, which - as 
it should be - is the same number as obtained in a VB method including all polar 
structures or in a MO calculation with complete configuration interaction [9]. 

For  systems with more than two bonds there are of course many other types 
of product functions. For  example in the case of three bonds A, B, and C one of 
the additional product functions is obtained by charge transfer from A to B, 
combination of the two resulting doublets to a 4-electron triplet, which together 
with the triplet of C yields a 6-electron singlet. These highly excited functions 
will not be considered in this paper, although they will be important for the cal- 
culation of excited states. 

In most calculations we will restrict ourselves to ~0 G, all product functions in 
which one of the bonds is excited to the lowest singlet state, all product functions 
in which two bonds are excited to the triplet state and all product functions with 
a transfer of one electron between two bonds with both resulting doublets being 
in their ground state. For  n bonds the number of product functions then becomes 
I + n + l n ( n -  1)+ n ( n -  1)= 3n2- �89  + I. In most cases this should be sufficient 
for a reasonable calculation of the ground state energy. For  example in the case 
of cis-butadiene we obtain, using van der Lugt's parameters [9], for the 7z-electron 

energy: ~G only - 9.47 eV, 

3 . 2  1.  - -  7n - ~n ~- 1 = 6 product  functions - 10.18 eV, 

complete calculation - 10.27eV. 

The matrix elements between the different types of product functions can be 
calculated in a simple way by using the formulae given in a previous paper [7] 
or by straightforward application of the rules for matrix elements between valence 
bond wave functions given by van der Lugt [9]. Therefore we will not discuss this 
point in detail. 
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F ina l ly ,  it s h o u l d  be  n o t e d  tha t  the  func t ions  q~rr can  in gene ra l  be  neg l ec t ed  

for g r o u n d  s ta te  c a l c u l a t i o n s  on  m o l e c u l e s  w i th  an  even  n u m b e r  of  e lec t rons .  

H o w e v e r ,  t hey  a re  ve ry  i m p o r t a n t  for l o w - l y i n g  exc i ted  states.  M o r e o v e r ,  we  will  

a lso  use o u r  m e t h o d  for r ad ica l s  l ike the  e thyl  rad ica l ,  w h e r e  the  u n p a i r e d  e l ec t ron  

is la rge ly  local ized .  In  these  cases  we  c o m b i n e  the  u n p a i r e d  e l ec t ron  wi th  an  

a d d i t i o n a l  e l ec t ron  in a n o n - i n t e r a c t i n g  " g h o s t - o r b i t a l "  to a p s e u d o - b o n d -  
func t ion .  F u n c t i o n s  ~i~ r in wh ich  e i ther  i o r  j is this p s e u d o - b o n d  a p p e a r  to  be 

espec ia l ly  i m p o r t a n t  in c a l cu l a t i ons  of  the  spin  dens i ty  d i s t r ibu t ion .  

3. Ground State Energies of Some Simple Hydrocarbons and Hydrocarbon Radicals 

3.1. General Remarks 

In  T a b l e  i we h a v e  co l l ec t ed  s o m e  resul t s  o f  c a l cu l a t i ons  on  s imple  h y d r o -  

c a r b o n s  a n d  h y d r o c a r b o n  radica ls .  Before  d i scuss ing  pa r t  o f  these  d a t a  in de ta i l  

we first cons ide r  s o m e  gene ra l  conc lus ions .  

F i r s t  o f  all  it a p p e a r s  f r o m  the  t ab le  tha t  in all  cases  excep t  e thy lene  r o t a t e d  

o v e r  90 ~ - a specia l  case  to be  d i scussed  b e l o w  - the  f inal  ene rgy  w i t h o u t  ad-  

d i t i o n a i  p r o d u c t  func t ions  is l ower  t h a n  the  va lue  o b t a i n e d  f r o m  M O - C N D O  

ca lcu la t ions .  Th i s  shows,  t ha t  w i th  r e g a r d  to  the  g r o u n d  s ta te  ene rgy  o u r  m e t h o d  

c o m p a r e s  f a v o u r a b l y  wi th  the  u sua l  M O - C N D O  a p p r o a c h .  W h a t  we  t h ink  to be  

m o r e  i m p o r t a n t ,  h o w e v e r ,  a re  the  c o n c l u s i o n s  o b t a i n e d  f r o m  a c o m p a r i s o n  of  the  
va lues  g iven  in the  d i f ferent  c o l u m n s  of  T a b l e  1. 

T h e  d i f ference  b e t w e e n  the  ene rgy  o b t a i n e d  f r o m  q~G on ly  and  the  final  va lue  

is smal les t  in the  case  of  the  e t h a n e  mo lecu l e .  F o r  p l a n a r  e thy lene  this d i f ference  
is s l ight ly  larger ,  p r o b a b l y  because  of  the  c h a n g e  in hyb r id i za t i on .  U p o n  r e m o v a l  

o f  a h y d r o g e n  a t o m  these  m o l e c u l e s  give the  e thyl  a n d  v inyl  r ad ica l  respec t ive ly .  

In  b o t h  cases the  d i f ference  b e t w e e n  c o l u m n s  2 and  3 b e c o m e s  larger .  Th i s  is 

easi ly u n d e r s t o o d  because  the  u n p a i r e d  e l ec t ron  is re la t ive ly  loose ly  b o u n d  which  
leads  to l o w e r  exc i t a t i on  energ ies  of  pa r t  of  the  cha rge  t ransfer  t ype  of  p r o d u c t  

func t ions  or, in o t h e r  words ,  to  a m o r e  p r o n o u n c e d  de loca l i za t ion .  Th i s  s a m e  

Table I. Ground state energies (eV) of some simple hydrocarbons and hydrocarbon radicals 

MO-CNDO ( G bH [ G) After dia- + Additional 
gonalization product 

functions 

Ethane staggered - 511.573 - 512.134 ~ 513.439 - -  
eclipsed - 511.481 - 512.116 - 513.335 - -  

Cyclopropane - 705.496 - 702.163 - 706.983 - -  
Ethylene planar - 464.318 - 464.288 - 465.931 - 465.93 l 
Rotated over 15 ~ - 464.144 - 463.911 - 465.734 - 465.734 
Rotated over 40 ~ - 463.083 - 461.735 - 464.519 - 464.522 
Rotated over 60 ~ - 461.547 - 458.949 - 462.707 - 462.737 
Rotated over 90 ~ - 458.120 - 455.515 - 458.032 - 459.757 
Ethyl radical - 485.116 - 484.760 - 486.591 - -  
Vinyl ~ / C C H  1 = 120 ~ -436.394 -434.552 -437.557 - -  
Radical [ /_ CCH 1 = 150 ~ -436.846 -435.168 -437.951 - -  
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effect is observed upon rotation in the ethylene molecule. The ~z-bond then 
weakens whereas simultaneously the interaction of ~G with the "zc-rr"-charge 
transfer product functions is no longer vanishing for symmetry reasons. Finally 
cyclopropane is often said to have a more or less delocalized character. This 
again is reflected in our calculations by the relatively large difference between the 
values given in columns 2 and 3. 

It is furthermore interesting to see that the differences between column 2 
and 3 correspond with the differences between the values in column 2, the com- 
pletely delocalized approach, and column 2, the purely localized picture. 

3.2. The Barrier of  Rotation in Ethane 

Both the MO-CNDO result (0.092 eV = 2.J Kcal/Mol) and our final result 
(0.104 eV = 2.4 Kcal/Mol) are in good agreement with the experimental value of 
2.9 Kcal/Mol. In the introduction we have remarked that in our method the 
interaction between the bonds is mainly introduced through the mixing of qjG 
with other product functions. This is clearly illustrated by the very small barrier 
of 0.4 Kcal/Mol obtained from calculations on qJ~ only. This value is entirely due 
to the Coulomb-interaction between the isolated CH-bonds. In order to under- 
stand the origin of our final value of 2.4 Kcal/Mol we have calculated the con- 
tribution of the relevant charge transfer product functions to the ground state 
energy with second order perturbation theory. From the results given in Table 2 
it follows that the charge transfer contribution to the barrier of rotation, as cal- 
culated by perturbation theory, is 1.7 Kcal/Mol. Together with the value of 
0.4 Kcal/Mol mentioned above, this yields a barrier of 2.1 Kcal/Mol, in good 
agreement with the complete calculation. It is furthermore interesting to observe 
the important contribution of the interaction between trans-CH-bonds in the case 
of staggered ethane. 

It may be worthwhile to make a comparison of our results with the calcula- 
tions by Sovers et al. [i0]. According to these authors the barrier of rotation 

T a b l e  2. C h a r g e  t rans fe r  c o n t r i b u t i o n s  to the  g r o u n d  s ta te  ene rgy  of  e thane  ca l cu l a t ed  wi th  per-  
t u r b a t i o n  t h e o r y  

C T  type  o f  T o t a l  c o n t r i b u t i o n  for  6 p r o d u c t  f unc t i ons  

p r o d u c t  f u n c t i o n  s t a g g e r e d  ecl ipsed 

eV K c a l / M o l  eV K c a l / M o l  

1 --+5 - 0 . 0 9 6  - 2.22 - 0 . 4 6 8  - 10.80 
1 ~ 6  - 0 . 0 9 6  - 2.22 - 0 . 2 5 2  - 5.82 
1 ~ 7  - 0 . 8 5 3  - 19.68 - 0 . 2 5 2  - 5.82 

T o t a l  - 1.046 - 24.12 - 0.973 - 22.44 

H H H H 

17 3 -i7 
H H H 

s t a g g e r e d  ecl ipsed 
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should be ascribed to the exchange interaction between CH-bonds belonging to 
different methyl groups. In our case the exchange integrals vanish because of 
neglect of overlap and differential overlap. It is well known that upon ortho- 
gonalization of atomic orbitals the exchange interactions are transformed into 
interactions between wave functions with a different distribution of electrons over 
the atomic orbitals. For example, in VB calculations with neglect of overlap polar 
structures are essential for a description of chemical bonding. In our case these 
polar structures are replaced by charge transfer type of wave functions. Therefore 
our results are in fundamental agreement with the conclusions reached by 
Sovers et al. 

4. Ethylene 

As has been remarked before, the neutral bond a(1,2) is described by the 
following bond function: 

a(1,2) = #a{lPql+ Iq~l}/l/2 + ;~a Ip~]+ v, lq'~[, 

the coefficients/~, ;~a, and v a being determined by diagonalizing the energy matrix 
resulting in the eigenvalues of the neutral bond in the ground state singlet, in the 
first and in the second excited singlet state. The off-diagonal elements of this 
matrix are proportional to the resonance integral between the orbitals p and q. 
In the case of ethylene the absolute value of the resonance integral between the 
2p~-orbitals of the carbon-atoms diminishes upon rotation around the central 
E-bond and vanishes upon rotation over 90 ~ This process is accompanied by 
a reduced energy difference between the first and second excited state resulting 
in a degeneracy in the case of rotation over 90 ~ The same holds for the bond- 
functions, in which the To-bond has one or three electrons, namely: 

a ( l ) = # +  p ( l )+  v + q(1) 

a(1,2,3) =/~- IPPq[ + v- Iqq~l 
respectively. 

Therefore in the calculation of ethylene we have taken into account the fol- 
lowing additional product functions, describing: 

(1) the 7z-bond with two electrons excited to the second excited singlet state, 
(2) the re-bond with one electron excited to the other doublet state, 
(3) the 7t-bond with three electrons excited to the other doublet state. 

It appears that after inclusion of the additional product functions our results 
are again better than those obtained from MO-CN D O .  As can be seen in Table 1, 
the contribution of these additional functions to the energy of the ground state 
of ethylene is significant only upon a rotation over more than 40 ~ upon smaller 
rotations it is negligible. This also gives a justification for omitting these additional 
product functions in the calculation of the other molecules. 

5. TheSpin Density in the Ethyl and Vinyl Radicals 

As we have remarked before, the wave functions ~pfr are important in the 
calculation of the spin density. E.g. in the case of the ethyl radical the main con- 
tribution to the spin density (0.0t61) comes from the matrix-elements (tpg I~[ ~PijTr}, 
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in which i or j is a pseudo-bond function depending on the unpaired electron and 
an additional electron in a ghost orbital and d is the spin-density-operator. 
Another important contribution (0.0111) comes from the matrix-elements 
(~Pij(1, 3) [d[ ~Pij(1,3)), in which again i or j is the pseudo-bond. The calculated 
spin densities for the ethyl- and the vinyl-radical are given in Table 3. 

It appears that the M O - C N D O  values are about twice our result. In order to 
make sure that our values are not too low because of product functions not 
included in the calculation, we have estimated the contribution due to the fol- 
lowing matrix-elements obtained from additional product functions by means of 
a perturbation calculation; in the case of the ethyl radical: 

<lPi*,j( t,3) I~11/)id( l ,3)) 
(~,.,j(l, 3) Lal w,.jff, 3)> 

in which j stands for the pseudo-bond and i (i*) for one of the C - H  bonds of the 
methyl-group with one electron in the lower (higher) lying doublet and 

<~,j,(l,3) kal q,,j(1,3)> 
(w,j,(1,3) Idl w,,j,(~, 3)) 

in which i is the pseudo-bond and j (j*) is one of the C - H  bonds of the methyl- 
group with three electrons in the lower (higher) lying doublet. 

The additional spin density, obtained from this calculation is 0.0002, which 
is negligible. 

With the formula aH = a- Qr~, in which ~r~ is the calculated spin density and 
a is the coupling constant from the Fermi-contact term, we calculated the splitting 
constant a H of the hydrogen atoms of the ethyl- and vinylradical. The results are 
given in Table 3 together with the experimental value. As can be seen in this table, 

Table 3. Spin  densities in ethyl and vinyl radicals 

Spin density Spin density Splitting Splitting 
MO-CNDO present constant constant 

method calculated experimental [ l  1] 

Ethyl-radical 
H of the methyl-group 0.0460 0.0277 24.3 

Vinyl-radical /_ C C H 1  = 150 ~ 

H 1 0 .0328 0 .0204 17.9 
H a 0 .0699 0.0451 39.5 
H 3 0 .1160 0 .0602 52.7 

Vinyl-radical /_ C C H 1  = 120 ~ 

H 1 0 .0745 0 .0456 39.9 
H 2 0.04J 8 0 .0242 21.2 
H 3 0.1035 0 .0482 42.2 

26.9 

15.7 
34.2 
68.5 

//H2 
H~/~,C C H3 
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the M O - C N D O  result is too high. In order to find the same splitting constant 
as found experimentally, the spin densities from the M O - C N D O  program have 
to be multiplied with 506.8 Gauss, while in our calculations the more realistic 
value of 875.8 Gauss based on an effective nuclear charge of 1.2 has been used. 
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